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Summary

I’ll present an algorithm for performing Gaussian elimination
(i.e., computing an LU decomposition to solve a dense linear system)
that

is communication optimal and cache oblivious
matches the communication lower bounds for the
sequential two-level memory model
requires no tuning to cache size

is numerically stable
uses partial pivoting (row interchanges)

uses a matrix data layout that changes on the fly

we call it shape-morphing
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Two-Level Memory Model

Computation happens only in
fast memory (of size M)

Matrix is too large to fit in fast
memory

Communication happens
between slow and fast memory

Words stored contiguously in
slow memory can be read or
written as a single message

SLOW 

FAST 

runtime = (# messages) · α + (# words) · β + (# flops) · γ

Grey Ballard SPAA 2013 3



Two-Level Memory Model

Computation happens only in
fast memory (of size M)

Matrix is too large to fit in fast
memory

Communication happens
between slow and fast memory

Words stored contiguously in
slow memory can be read or
written as a single message

SLOW 

FAST 

runtime = (# messages) · α + (# words) · β + (# flops) · γ

Grey Ballard SPAA 2013 3



Two-Level Memory Model

Computation happens only in
fast memory (of size M)

Matrix is too large to fit in fast
memory

Communication happens
between slow and fast memory

Words stored contiguously in
slow memory can be read or
written as a single message

SLOW 

FAST 

runtime = (# messages) · α + (# words) · β + (# flops) · γ

Grey Ballard SPAA 2013 3



We Have Four Metrics

For best performance on two-level memory model, we want to

(1) minimize words moved

(2) minimize messages moved

For best performance on memory hierarchies, we also want to be

(3) cache oblivious

To get the right answer, we need to maintain

(4) numerical stability
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Summary Table

Algorithm
Minimizes Minimizes Cache Numerically

Words Messages Oblivious Stable

LAPACK

[ABB+92]
7 7 7 3

Square-Recursive LU

[BFJ+96]
3 3 3 7

Comm-Avoiding LU

[GDX11]
3 3 7 3

Rectangular-Rec LU

[Tol97]
3 7 3 3

Shape-Morphing LU 3 3 3 3
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Recall: Matrix Data Layouts

Column Major Block Contiguous Block Recursive

column major is most commonly used

block contiguous has a block size parameter

block recursive is also known as Morton ordering or bit-interleaved
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Recall: (Naive) Gaussian Elimination with Partial Pivoting

Find pivot and scale column Update Schur complement

for each column:

pivot the largest entry to the diagonal

divide the column by the diagonal entry

perform rank-one update on the trailing matrix (Schur complement)
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Square-Recursive Algorithm [BFJ+96]

LU

(recursively)

Triangular

Solves

Matrix

Multiplication

LU

(recursively)

maps to block recursive layout

minimizes words and messages and is cache oblivious

we forgot to pivot!

not numerically stable
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Communication-Avoiding LU (CALU) Algorithm [GDX11]
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Choose b pivot rows LU Triangular Solves Matrix Multiplication

blocked algorithm, maps to block contiguous layout

minimizes words and messages, but block size is cache aware

pivoting scheme is different from partial pivoting, but almost as
stable

called “tournament pivoting”



Communication-Avoiding LU (CALU) Algorithm [GDX11]
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LU

LU

LU
pivot
rows

pivot
rows

pivot
rows

blocked algorithm, maps to block contiguous layout

minimizes words and messages, but block size is cache aware

pivoting scheme is different from partial pivoting, but almost as
stable

called “tournament pivoting”



Rectangular-Recursive LU Algorithm [Tol97]

Triangular

Solve

Matrix

Multiplication

LU

(recursively)

LU

(recursively)

minimizes words and is cache oblivious

uses partial pivoting and so is numerically stable

what data layout to use?
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Data Layout Problem

Base case: find max element in
column, pivot, and scale column

need column-major layout
recursive layout costs too
many messages

Subroutines: rectangular matrix
multiplication and triangular
solve

need recursive layout
column-major costs too many
messages
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Shape-Morphing LU Algorithm

Shape Morphing Shape Morphing

Triangular

Solve

Matrix

Multiplication

LU

(recursively)

LU

(recursively)

start and end in column-major layout

switch to recursive for subroutine calls, then switch back
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Main Idea: Shape Morphing

convert between column-major and recursive layouts

can be cache oblivious and communication efficient

sacrifice some extra words moved (lower order term) in order to
minimize messages
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Other Complications

rectangular recursive layout

generalizes Morton ordering
“split largest dimension”

rectangular triangular solve

recursive algorithm

applying pivots (row interchanges)

needs to be cache oblivious
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Asymptotics

Algorithm Words Messages

Lower Bound
Ω
(

n3
√
M

)
Ω
(

n3

M3/2

)
[BDHS11, GDX11]

CALU [GDX11] O
(

n3
√
M

+ n2
)

O
(

n3

M3/2 + n2

M

)
Rect-Rec LU [Tol97] O

(
n3
√
M

+ n2log n2

M

)
O
(
n3

M + n2

M log n2

M

)
Shape-Morphing LU O

(
n3
√
M

+ n2log2 n2

M

)
O
(

n3

M3/2 + n2

M log2 n2

M

)
n is matrix dimension, M is fast memory size

(this table assumes a square matrix, maximum message size of M)
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Discussion / Open Problems

Same story for QR decomposition

shape morphing technique can be applied to a similar rectangular
recursive algorithm with equivalent results

Extension to parallel case is an open problem

tournament pivoting seems necessary in parallel case
data redistribution on the fly seems too expensive

Performance data still needed

shape morphing will be most useful when latency costs are high and
message sizes can be large (e.g., out-of-core computations)
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